
21st Century Curriculum | May 2013 Digital Edition

Today's kid-friendly computer languages, like Scratch and Alice, encourage creative expression and
exploration.

By Margo Pierce
06/11/13

Forty years ago, when large mainframe computers roamed the earth, few experts gave much thought
to how these mammoth machines could be used for education, and fewer still about how they could
help young learners create, explore, and learn through technology. At the time, highly trained
programmers still worked in inaccessible languages that mainly processed numbers. But all that
changed with a turtle. In 1967, MIT professor Seymour Papert and colleagues developed Logo, an
early language for children. Its main innovation? A small robot--the turtle--that students could easily
program to move or rotate. For the first time, young programmers got instant feedback and a physical
manifestation of their commands.

While Logo's use spread throughout the 1970s, programming never achieved the influence in schools
that Papert had envisioned. It wasn't considered a viable educational tool until schools had routine
access to computers. Even now, at a time when computers are pervasive in everyday life, many
educators still question the value of children becoming articulate in the language of technology--

How These Amazing, Kid-Friendly Languages Are Hooking Tomor... http://thejournal.com/Articles/2013/05/30/How-These-Amazing-Kid...

1 of 4 7/29/2013 3:24 PM

How These Amazing, Kid-Friendly Languages Are Hooking Tomorrow's
Programmers

This article, with an exclusive video interview, originally appeared in T.H.E. Journal's May 2013
digital edition.

programming. But as STEM and Common Core concepts--with their emphasis on math, science, and
critical thinking skills--begin to shift curricula across the K-12 spectrum, coding is sparking renewed
interest.

"We really need to broaden, to rethink what it means to be fluent in today's society," says Mitch
Resnick, the LEGO Papert Professor of Learning Research at MIT. "The ability to program, the
ability to code, is an important part of being 'fluent' today. In the same way that learning to read opens
up opportunities for many other things, and learning to write gives you a new way to express yourself
and seeing the world, we see that coding is the same."

In schools where programming is taught, it often acts as a stand-alone class or as part of an after-
school program. According to Susan Einhorn, the chair of the management team that runs Papert's
company LCSI, part of the reason programming hasn't seen greater integration is that there is no
consensus about where it fits within the educational curriculum,. The lack of qualified computer-
science teachers and educators comfortable enough with technology to teach programming is another
barrier, as is a general resistance to a class that looks more like fun than substance.

"Just because something's fun doesn't make it easy. Seymour would describe it as 'hard fun,'" Einhorn
says. "We learn through hard fun. We have to stop seeing learning as rote. It is an active, participatory
thing. When you're engaged in something, then you learn the most because you are exploring it."

Papert also contends that people learn better when they're engaged in creating something that is
personally meaningful to them. To that end, MicroWorlds, LCSI's current iteration of Papert's
programming language for children, encourages curiosity and experimentation beyond the precise
syntax and complex character strings demanded by languages like Java and C++. With MicroWorlds
and other languages like it, students can drag and drop commands and test their creations without
miring themselves in the minutiae of syntax, which can be confusing for both students and teachers.

The strategy isn't new--it was all part of Papert's educational philosophy developed in the time of
Logo. "'Constructionism' was a term invented by Seymour Papert," says Einhorn. "It means that, if
you're constructing something externally, you help build that knowledge within your head, so that it's
not just abstract.… You're also gaining new ideas about how the world works and new
understanding."

Like Papert, MIT professor Resnick has learned the value of keeping kids interested while teaching
them the fundamentals of technology. In 1989, he cofounded Computer Clubhouse, a Boston-based
club for a group of kids who were curious about creating with technology but were otherwise
underserved by the local community. This experience also underscored the need for a free
programming language that was both accessible and capable of helping students create a wide range
of projects.

When Resnick first started working with schools, kids weren't using any programming languages to
create projects. They used software programs such as Photoshop to create collages, music software to
orchestrate compositions, and video programs to bring the different elements together. Contemporary,
general-use programming languages were not user-friendly for young people or teachers, and other
kid-friendly languages were somewhat limiting, so Resnick and his team decided to create the next

How These Amazing, Kid-Friendly Languages Are Hooking Tomor... http://thejournal.com/Articles/2013/05/30/How-These-Amazing-Kid...

2 of 4 7/29/2013 3:24 PM

Coding to Learn

generation of constructivist programming language for kids. Their language, Scratch, was released in
2006. Like other languages aimed at kids, Scratch's interface is based on a drag-and-drop,
building-block approach that lets users experiment with variables and conditions in an intuitive way.

"We wanted to have a programming language [with which] you could build your projects and your
programs by tinkering, the same way you do with LEGO bricks," Resnick says. "That led us to the
graphical programming approach that we use."

In the seven years since its release, Scratch has become a community, thanks to social media tools that
bring together students from around the world. Today, enthusiasm among teachers is growing as
Scratch users share their experiences, lessons, and challenges with each other via ScratchEd,
Facebook, and personal connections made at MIT trainings, meet-ups, and other Scratch-based
events.

"We felt the best learning experiences happen when kids are interacting and sharing and collaborating
with one another," Resnick says. "Our goal is not to help kids to learn to code but code to learn. The
coding or the programming is not the end goal; it's more a means of learning many other things."

Engaging kids on a personal level is part of what's made Joanna Boyd's computer programming class
at Bob Miller Middle School in Henderson, NV, so popular that it expanded from a nine-week
experiment to an 18-week, project-based course. Boyd uses a number of programming languages
designed for young learners, including Scratch and Alice (See the "Learn the Languages" sidebar).
She teaches students to develop their project ideas, created on a storyboard, into finished products that
they present to the class.

Rather than inventing and assigning new projects for students, Boyd encourages students to create
their own programs around what they're already learning in other classes. While some students might
create a program around the structure of DNA that they're learning in science class, others take an
opportunity to bring their understanding of books like to life. "Now I've got the
hook of what they're doing every day, what they're the experts in, and then I'm giving them the tool of
Alice to create," says Boyd.

That hook can also provide a level of excitement and engagement that students might not otherwise
get from the curriculum. Namely, Boyd says, they're having fun. "I really believe it's exciting their
brain--that part of the brain that education doesn't give them," she says. "I think we're so driven by
standards and curriculum and teaching to the test that we've lost the creativity of education."

When a student hits a snag in programming, Boyd engages the entire class to figure out how to
resolve the problem. Another student might have already encountered the same issue and can walk
through the solution. Although she lets the students choose projects that interest them, as the
facilitator she provides resources for researching and learning new programming concepts and does
what she can to use programming to further their overall education.

"These students do not know how to connect the subject areas with each other. I try to do that in this
class. I make it a relationship," Boyd says. "You need to see the whole picture in order to accomplish
the task. You need to strategize, and that's what I feel I'm giving at this level, which is a more

How These Amazing, Kid-Friendly Languages Are Hooking Tomor... http://thejournal.com/Articles/2013/05/30/How-These-Amazing-Kid...

3 of 4 7/29/2013 3:24 PM

Tools to Create

A Wrinkle in Time

teachable level."

The result is increased self-esteem, shy children "getting out of their seats," and special-needs
children participating with other students. According to Boyd, girls are outperforming boys in
mastery of the language and quality of work. She adds that the shared experience of working with
technology leads students to connect with their parents in a way she hasn't seen with other subjects.
For example, she recalls a father who works at the Hoover Dam bonding with his son over a
programming assignment. But it's not all work, all the time.

"Programming gives the students a logical method to present themselves in a creative way and own
their learning," Boyd says. "Logic to a lot of people means math, but it really is math being creative.
It's about learning and owning it. That's what they do in programming. They get to be logical and
creative at the same time."

The history of computer languages designed with kids in mind dates back to the 1960s. Here are
three popular iterations that students are currently exploring.

Created as a way to teach programming theory to young students, Alice lets users
experiment with 3D animations, games, and videos through drag-and-drop programming of
interactions between virtual people and objects in a 3D world--making it especially useful for
storytelling exercises.

Using the Logo language designed by Seymour Papert, LCSI's flagship software,
MicroWorlds EX, is designed for children starting in fourth grade. Still based around--but no
longer limited to--Logo's famous turtle, the program lets students command an object, animate it,
or have it interact with other objects.

Developed by an MIT team led by computer science professor Mitch Resnick, Scratch is
a colorful, easy-to-learn programming language used by children as young as 5. Users drag and
drop blocks, stacking programming fundamentals, such as conditions and actions, on top of each
other to create animations or other types of programs--without regard to syntax and other
hallmarks of advanced computer languages.

About the Author

Margo Pierce is a Cincinnati-based freelance writer.

Copyright © 2013, 1105 Media Inc.

, please visit www.1105reprints.com for licensing/reprint information.

How These Amazing, Kid-Friendly Languages Are Hooking Tomor... http://thejournal.com/Articles/2013/05/30/How-These-Amazing-Kid...

4 of 4 7/29/2013 3:24 PM

Learn the Languages

Alice:

MicroWorlds:

Scratch:

For private use only

	Page 1
	Page 2
	Page 3
	Page 4

